TERBARU

Pengertian dan prinsip NMR

nmr
Nuclear Magnetic Resonance (NMR) adalah salah satu metode analisis yang paling mudah digunakan pada kimia modern. NMR digunakan untuk menentukan struktur dari komponen alami dan sintetik yang baru, kemurnian dari komponen, dan arah reaksi kimia sebagaimana hubungan komponen dalam larutan yang dapat mengalami reaksi kimia. Meskipun banyak jenis nuclei yang berbeda akan menghasilkan spektrum, nuclei hidrogen (H) secara histori adalah salah satu yang paling sering diamati. Spektrokopi NMR khususnya digunakan pada studi molekul organik karena biasanya membentuk atom hidrogen dengan jumlah yang sangat besar.


NMR digunakan untuk menentukan struktur dari komponen alami dan sintetik yang baru, kemurnian dari komponen, dan arah reaksi kimia sebagaimana hubungan komponen dalam larutan yang dapat mengalami reaksi kimia. Spektroskopi NMR merupakan alat yang dikembangkan dalam biologi structural. Spektroskopi resonansi magnet inti seringkali disingkat NMR termasuk ke dalam spektroskopi absorpsi seperti halnya dengan spektroskopi infra merah atau spektroskpoi ultra violet. Dasar dari spektroskopi NMR adalah absorpsi radiasi elektromagnetik dengan frekuensi radio oleh inti atom. Frekuensi radio yang digunakan berkisar dari 0,1 sampai dengan 100 MHz. Bahkan, baru-baru ini ada spektrometer NMR yang menggunakan radio frekuensi sampai 500MHz.

Banyak inti (atau lebih tepat, inti dengan paling tidak jumlah proton atau neutronnya ganjil) dapat dianggap sebagai magnet kecil. Inti seperti proton (1H atau H-1) dan inti karbon-13 (13C atau C-13, kelimpahan alaminya sekitar 1%). Karbon -12 (12C), yang dijadikan standar penentuan massa, tidak bersifat magnet.
Bila sampel yang mengandung 1H atau 13C atau bahkan semua senyawa organik, ditempatkan dalam medan magnet, akan timbul interaksi antara medan magnet luar dengan magnet kecil (inti). Karena adanya interaksi ini, magnet kecil akan terbagi atas dua tingkat energi, yaitu: tingkat yang sedikit agak lebih stabil (+) dan keadaan yang kurang stabil (-) yang energinya berbeda. Karena dunia inti adalah dunia mikroskopik, energi yang berkaitan dengan inti ini terkuantisasi, artinya tidak kontinyu. Perbedaan energi antara dua keadaan diberikan oleh persamaan sebagai berikut:
∆E = γhH/2π
Keterangan:
H : Kuat medan magnet luar (yakni magnet spektrometer)
H : Tetapan Planck
γ : Tetapn khas bagi jenis inti tertentu, disebut dengan rasio giromagnetik dan untuk proton nilainya 2,6752 x 108 kg-1 s A (A= amper)
Bila sampel disinari dengan gelombang elektromagnetik ν yang berkaitan dengan perbedaan energi ∆E, yakni:
∆E = hν
inti dalam keadaan (+) mengabsorbsi energi ini dan tereksitasi ke tingkat energi (-). Proses mengeksitasi inti dalam medan magnetik akan mengabsorbsi energi (resonansi) disebut nuclear magnetic resonance (NMR). Frekuensi gelombang elektromagnetik yang diabsorbsi diungkapkan sebagai fungsi H.
ν = γH/2π
Bila kekuatan medan magnet luar, yakni magnet spektrometer, adalah 2,3490 T (tesla, 1 T = 23490 Gauss), ν yang diamati sekitar 1 x 108 Hz = 100 MHz. Nilai frekuensi ini di daerah gelombang mikro.
Seacara prinsip, frekuensi gelombang elektromagnetik yang diserap ditentukan oleh kekuatan magnet dan jenis inti yang diamati. Namun, perubahan kecil dalam frekuensi diinduksi oleh perbedaan lingkungan kimia tempat inti tersebut berada. Perubahan ini disebut pergeseran kimia.

Sumber: http://hmk.ub.ac.id/?p=483

No comments